Duality in convex minimum cost flow problems in infinite networks

نویسنده

  • Archis Ghate
چکیده

Minimum cost flow problems in infinite networks arise, for example, in infinite-horizon sequential decision problems such as production planning. Strong duality for these problems was recently established for the special case of linear costs using an infinite-dimensional simplex algorithm. Here, we use a different approach to derive duality results when the costs are convex. We formulate the primal and dual problems in appropriately paired sequence spaces such that weak duality and complementary slackness can be established using finite-dimensional proof techniques. We then prove, using a planning horizon proof technique, that the absence of a duality gap between carefully constructed finite-dimensional truncations of the primal problem and their duals is preserved in the limit. We then establish that strong duality holds when optimal solutions to the finite-dimensional duals are bounded. These theoretical results are illustrated via an infinite-horizon shortest path problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality of Ellipsoidal Approximations via Semi-Infinite Programming

In this work, we develop duality of the minimum volume circumscribed ellipsoid and the maximum volume inscribed ellipsoid problems. We present a unified treatment of both problems using convex semi–infinite programming. We establish the known duality relationship between the minimum volume circumscribed ellipsoid problem and the optimal experimental design problem in statistics. The duality res...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

Balanced Min Cost Flow on Skew Symmetric Networks with Convex Costs

We consider the solution of matching problems with a convex cost function via a network flow algorithm. We review the general mapping between matching problems and flow problems on skew symmetric networks and revisit several results on optimality of network flows. We use these results to derive a balanced capacity scaling algorithm for matching problems with a linear cost function. The latter i...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

On a capacity scaling algorithm for the constrained maximum flow problem

The constrained maximum flow problem is to send the maximum possible flow from a source node s to a sink node t in a directed network subject to a budget constraint that the cost of flow is no more than D. In this paper, we consider two versions of this problem: (i) when the cost of flow on each arc is a linear function of the amount of flow; and (ii) when the cost of flow is a convex function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015